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Abstract 

Experimental cutting tests often show different dynamic behavior from the one predicted by means of theoretical mechanical models. One reason 
behind this observation is that stability lobe diagrams determined by standard linear stability analysis often under- or overestimate the region of 
chatter-free parameters. Therefore, reliable selection of technological parameters associated with optimal material removal rate is difficult in 
practice. In this paper, a simple formula is given to estimate the safe parameter region, where the machining operation is globally stable even for 
large disturbances. The analytical results are confirmed by numerical simulations. 
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1. Introduction 

The occurrence of harmful vibrations (chatter) adversely 
affects the achievable productivity and surface quality in high-
speed metal cutting. Suppressing or avoiding chatter is 
therefore an important task for machining engineers. Thus, 
investigating the dynamics of machine tool chatter is an active 
field of research. One of the most commonly accepted 
explanations for chatter is the regenerative effect introduced by 
Tobias [1] and Tlusty [2]: the vibrations of the tool are recorded 
on the surface of the workpiece, which induces variations in the 
chip thickness and hence in the cutting-force one revolution 
later. Stability properties of machining processes are depicted 
by the so-called stability lobe diagrams, which plot the 
maximum stable depths of cut versus the spindle speed. There 
are many different numerical and semi-analytical methods to 
generate stability lobe diagrams using the dynamic parameters 
of the machine-tool-workpiece system (see, e.g., the methods 
listed in [3]). However, predicted stability diagrams do not 
always match experimental cutting tests [4].  

There are several reasons behind the difference between 
experimental results and analytical stability predictions. First, 
the physics of chip formation is still not fully understood and 
developing new dynamical models for material removal is still 
an active field of research [5,6]. Uncertainties of the modal 
parameters of the machining system can also lead to significant 
differences in the stability diagrams [7,8,9]. Another reason for 
these differences is the nature of the mechanical models: most 
models in the literature use linear systems, which cannot predict 
the behavior of the process when large-amplitude vibrations 
arise. As it was shown in [10], machine tool chatter is a large-
amplitude vibration evolved as a result of a subcritical Hopf 
bifurcation. From practical point of view, this means that below 
the linear stability boundaries, an unstable periodic orbit 
coexists together with the stable fixed point associated with 
stationary cutting. If the system gets out of the domain of 
attraction of the fixed point due to disturbances, then the 
amplitude of the vibrations grows and, at certain point, the tool 
leaves the workpiece. As a result, a large-amplitude vibration, 
which is known as chatter, is developed. The region where both 
stable machining and chatter may occur is called bistable or 
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unsafe zone [11]. If the technological parameters are set within 
the unsafe zone, then machine tool chatter can suddenly evolve 
in spite of the fact that the system is linearly stable. 
Consequently, reliable estimation of the unsafe zone is of high 
importance.  

The unsafe zone was observed experimentally already by 
Shi and Tobias in 1984 [12] (see Fig. 3 in [12]). They disturbed 
a stable machining process by hitting the cutter head by a 
hammer. For small hammer blow the vibrations settled after a 
transient, however, for large blow, chatter built up. A more 
sophisticated demonstration of the unsafe zone was presented 
in [13], where the axial depth of cut was first gradually 
increased and then gradually decreased during the cutting tests. 
The onset and the disappearance of chatter were detected for 
both cases. The depth of cut where chatter developed for the 
increasing depths of cut was found to be larger than that where 
chatter disappeared for the decreasing depths of cut. The 
difference between the two values gives the width of the unsafe 
zone. 

As it was shown in [11], the size of the unsafe zone depends 
on the relation between the cutting force and the uncut chip 
thickness (see also [14] for more details). For instance, if the 
cutting-force characteristics is given by an exponential form 
(e.g., by the three-quarter rule), then the unsafe zone occupies 
only 4% of the linearly stable region. However, if the cutting-
force characteristics is given by a cubic expression, then the 
unsafe zone can be significantly larger.  

The analytical estimate for the size of the unsafe zone in [11] 
does not match the numerical results for large-amplitude 
vibrations. Therefore, an improved, higher-order estimation 
was recently derived in [15], which agrees well with numerical 
simulations. In this paper, the application of the improved 
estimation of [15] is demonstrated using series of time-domain 
simulations.  

2. Mechanical model 

In this paper, the single-degree-of-freedom mechanical 
model of orthogonal cutting is investigated. The model is 
shown in Fig. 1, where a turning operation of a solid shaft is 
presented. This model considers vibrations only in the feed 
direction, motion in other directions is neglected. The 
vibrations between the tool and the workpiece are described by 
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where m  is the modal mass,   is the damping ratio, and n  
is the undamped natural angular frequency of the dominant 
vibration mode of the cutting process. 

The ݔ-directional component xF  of the cutting force acting 
on the tool can be given as a cubic polynomial of the chip 
thickness h  according to the Tobias force expression [12]: 
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where w  is the chip width, and the following constants were 
identified in the experiments of [12] for a milling tool of four 
teeth: ,N/m10×6.1096 29

1    ,N/m10×-5.41416= 313
2  

.N/m10×2.03769= 417
3  Note that when 0h , the tool is 

not touching the workpiece and the cutting force is zero. In the 
analysis presented below, this case is excluded, and it is 
assumed that the tool remains in contact with the workpiece 
during the entire cutting process. Also note that other cutting 
force expressions like the three-quarter rule are commonly used 
as well [13]. Such expressions can be expanded into Taylor 
series up to third order and can be written in the form (2). 

The instantaneous uncut chip thickness  th   can be 
calculated according to the theory of regenerative machine tool 
chatter as 

     ,0 txtxhth    (3)

where 0h  is the feed per revolution and   is the regenerative 
delay, which is now equal to the rotational period of the spindle: 

 /60 , where   denotes the spindle speed in rpm. 
Equations (1)-(3) form a delay-differential equation with 
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are dimensionless cutting force coefficients. 
 
 

 

Fig. 1. Mechanical model of orthogonal cutting. 
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3. Unsafe zone in the stability lobe diagrams 

The linear stability boundaries of Eq. (4) depicted on the 
plane of the dimensionless spindle speed 60/2   and the 
dimensionless chip width p   are well known [1,2,3], and are 
referred to as stability lobe diagrams. An example is shown in 
Fig. 2 with 02.0 . Here, the linear stability boundaries are 
shown by solid lines. 

Experimental results often show that the standard linear 
stability analysis under- or overestimates the region of chatter-
free technological parameters. On the one hand, the difference 
between experimental results and theoretical predictions can be 
explained by the modeling uncertainties: the inaccuracy of the 
modal parameters of the machining system and the 
uncertainties in the cutting force characteristics (2). On the 
other hand, linear stability analysis can still fail to predict 
machine tool chatter even for a perfectly built mechanical 
model without uncertainties. The reason behind is the 
nonlinearity of the cutting force as a function of the chip 
thickness. 

The effect of cutting force nonlinearity on the stability of 
machining operations has been studied since the 1980s. In [12], 
the phenomenon of finite amplitude instability was reported in 
cutting experiments. Accordingly, there exist certain 
technological parameter combinations such that stable 
stationary cutting may become unstable for large enough 
disturbances such as inhomogeneities in the workpiece material 
or discontinuities (e.g., holes or grooves) in the machined 
surface. These parameter regions are referred to as unsafe zone 
in the stability lobe diagrams. In the unsafe zone, the linear 
stability analysis predicts chatter-free cutting, but, due to 
nonlinear effects, machine tool vibrations initiate for external 
disturbances and large (but finite) amplitude vibrations arise.  

In [11], the size of the unsafe zone was determined by 
analyzing Eq. (4). It was shown that the size of the unsafe zone 
relative to the size of the linearly stable region is approximately 
constant and can be estimated by 
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irrespective of the spindle speed and the and chip width. 
Therefore, bistR  percent of the stable region predicted by linear 
cutting force models is unsafe and should be avoided when 
selecting the technological parameters. 

However, for large feed per revolutions when the unsafe 
zone itself is large, numerical stability analysis showed [11] that 
formula (6) tends to overestimate the size of the unsafe zone. 
Therefore, an improved version of this formula was derived in 
[15], which agrees well with the numerical stability analysis of 
Eq. (4) even for large feeds: 
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The unsafe parameter region is indicated by dark grey 
shading in Fig. 2, and its boundary calculated according to Eq. 
(7) is shown by a dash-dot line. Here, the feed is  μm800 h  
per revolution. The boundary of the unsafe zone obtained by 
Eq. (6) is also indicated by a dashed line. It can be seen that 
formula (6) overestimates the size of the unsafe zone in this 
example. 

4. Numerical simulations 

In order to verify the analytical estimation (7) for the size of 
the unsafe zone, numerical simulations were performed using 
the built-in Matlab solver ddensd. Although the analysis 
presented above excludes loss of contact between the tool and 
the workpiece during machine tool vibrations, it was taken into 
account during the numerical simulations shown in Fig. 2. 
Correspondingly, a nonsmooth system was simulated where 
switching occurs between the dynamics of a tool currently 
engaged in cutting and a tool which lost contact with the 
workpiece and is out of the cut due to large-amplitude chatter. 
The detection of contact loss   0th  was handled by the 
event location option of ddensd. 
 

 

Fig. 2. Stability lobe diagram of the orthogonal cutting process and the results of numerical simulations corresponding to unstable (A), unsafe (B, C), and stable 
(D) technological parameter combinations. 
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The governing equations of this nonsmooth system are given 
by Eqs. (8)-(10) in [16], which correspond to Eqs. (1)-(2) of the 
present paper with chip thickness expression 

     .0 txthth    (8)

Here,  t  denotes the position of the machined surface which 
is different from the position  tx  of the tool when loss of 
contact occurs between tool and workpiece. When the tool is 
out of cut   0th , the machined surface does not change and 

   tth  0  holds. When the tool is engaged in cutting 
  0th , the machined surface and the cutting edge are at the 

same position:    .ttx   The last two equations for  t  
were differentiated with respect to time and were added to the 
set of governing differential equations to perform the 
simulations with ddensd. 

The simulation results are shown for a set of four 
technological parameter combinations indicated by points A, B, 
C, and D in the stability lobe diagram in Fig. 2. At each point, 
the simulations are presented for two different initial 
conditions. The initial functions were constant along 0 t  
with value 4.0  and 5.0  for cases A and B, and 2  
and 25.2  for cases C and D, respectively. According to the 
simulations, point A is unstable, point D is stable for both initial 
conditions. Whereas points B and C are stable for small initial 
values, but become unstable for large ones. Based on the 
simulations, points B and C are indeed unsafe and hence 
external disturbances may lead to machine tool chatter when 
these technological parameters are used.  

5. Conclusions 

In this paper the stability of orthogonal cutting processes was 
investigated with special attention to the cutting force 
nonlinearity. It is known that linear dynamical models may fail 
to predict machine tool chatter for certain technological 
parameters. Namely, there exists an unsafe zone in the stability 
lobe diagrams of machining, where the cutting process is 
linearly stable, but chatter may still initiate for large enough 
disturbances due to nonlinear effects. However, the results of 
linear stability analysis can easily be extended and used for 
nonlinear models: a simple estimating formula was given in Eq. 
(7) to calculate the size of the unsafe zone relative to the size of 
the linearly stable region. Therefore, in order to determine a 
safe chatter-free technological parameter region, one has to 
compute the chatter-free domain based on standard linear 
models, calculate the size of the unsafe zone using Eq. (7), and 
subtract the unsafe zone from the linearly stable region. 

Apart from the nonlinear effects, there exist several other 
factors that cause differences between theoretical stability 
predictions and experimental results. On one hand, there are 
uncertainties in the mechanical model itself and in its modal 
parameters, as well as in the cutting force model. On the other 
hand, the complicated process of chip formation may include 
unknown phenomena affecting the stability of machining 
operations. Thus, our future research aims to investigate more 
detailed mechanical models of machine tool chatter that include 
effects like the distribution of the cutting force on the tool’s rake 

face, process damping, and the intermittent contact between the 
workpiece an the tool’s flank face. 
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